
A QUARTERLY APPLICATION SECURITY NEWSLETTER

Injection Attacks
How to inoculate your web applications from one of the oldest and
most dangerous cyberattacks.

What are they? The term “injection” encompasses a range of different
attack types. This includes vectors such as SQL injection (the most commonly
known type), code injections, LDAP injection, and many more. Depending
on the kind of injection different outcomes are possible, such as, unintended
data returned, malicious code executed on the users browser or even
unwanted commands could be executed on the application’s hardware.

Prevalence. Injections are one of the oldest and most dangerous attacks
aimed at web applications. This type of threat has continued to be rated
the top security risk on OWASP Top 10 Most Critical Web Application
Security Risks assessments. This high ranking is due to how dangerous and
widespread this type of vulnerability is in applications, especially legacy
ones. Another reason for the high ranking is due to how large the attack
surface is and how well understood this vulnerability type is. Because of this,
many freely available tools exist that allow even the most novice attackers
to automatically attack web applications with ease.

Cause. At the core of this type of vulnerability is the injection of untrusted
data or code into a trusted environment. For example, if there is a trusted
connection between a web application and an underlying database and
someone is able to add extra data to a query from the web application
then the query can return unintended data or even perform database
operations such as deleting data or the database itself. This could be done
by modifying the url of the site to include SQL commands or by submitting
code into a textbox on the website. This type of attack is a SQL injection.

→ CONTINUED ON NEXT PAGE

Welcome to the
first issue of the
AppSec Advisor
newsletter!

AppSec Advisor’s goal is to
communicate to the MS-ISAC
community and their peers
the best security practices
for application design and
implementation. We want to
achieve confidentiality, integrity,
and availability of the data that
an application creates, uses,
stores, transmits, and disposes.

This newsletter will be a shared
responsibility for all the members
of the MS-ISAC Application
Security workgroup. Please be
alert to information that you
think may be useful to share with
those who will be reading this
newsletter; the information you
provide may be what a fellow
colleague may need. Keep secure!

Contributors

Alder Locke • Senior Development
Analyst, Multnomah County, OR
Brett Scott • Applications Security
Analyst, Multnomah County, OR
Jacob Bartruff • Senior
Development Analyst, Multnomah
County, OR
Jessica Cone • Program Specialist,
MS-ISAC

Inside:
Free App Sec Tools • Code of the Month • Resources Websites

Vol. 1 / No. 1 / October 2019
TLP: WHITE

Free Tools

Some of these tools may be
familiar. Please let the workgroup
know of other tools you know
that may be useful for future
publications.

Wireshark
Popular network protocol
analyzer, looks closely at traffic
to and from devices (inlc. USB);
can save and load captured data
files (.pcap). AppSec use: can
help determine which ports and
destination IPs an application
uses to talk

Nmap
Network discovery and security
auditing; can determine what
ports are open and services are
enabled on remote devices.
AppSec use: can help determine
services are enabled by
application name and version
over which ports

Fiddler
HTTP debugging proxy server
app; captures and logs HTTP(S)
traffic using man-in-the-middle
interception. AppSec use: can
be configured to act as an
intermediary for HTTP(S) traffic
that an application could use

References

→→https://www.troyhunt.com
→→https://www.owasp.org/
index.php/Main_Page
→→https://www.owasp.org/
images/7/72/OWASP_Top_10-
2017_%28en%29.pdf.pdf
→→https://www.bsa.org/files/
reports/bsa_software_
security_framework_web_
final.pdf

• • • TERM OF THE MONTH

SAST/DAST–Static (source code)
/ Dynamic (web app/deployed)
Application Security Testing

→ CONTINUED FROM PAGE 1

How to mitigate. There are several different ways to mitigate against
injection attacks. These include utilizing defenses such as parameterized
statements, escaping of user input, input validation, whitelisting, and
limiting permissions. Most of these focus around the validation and
isolation of how user input is handled by the application, constraining the
input into parameters of certain data types or validating that the input is
correctly formed. Escaping of user input is another way to limit injection
attacks. Limiting the permissions of the credentials used by the application
to connect to a database or other system is another good way to mitigate
this type of attack. Since the connections between the web application and
other systems is often treated as a trusted connection, it is a good idea to
isolate what actions the credentials used in these connections can perform
on other systems. An example of this would be to remove the ability of a
credential to perform actions such as editing a database record or deleting
a database when the web application should only perform read actions.

• • • CODE OF THE MONTH

Technologies in use: .NET
.NET (dotnet) is an encompassing
term primary used to refer to a
software framework(s) created
by Microsoft. In the beginning,
the term was usually applied to
the .NET Framework a primarily
Windows based software
framework which included the
Framework Class Library (FCL) and
provided interoperability between
multiple programming languages.
Recently it has evolved to cover
other frameworks targeting
several different platforms such

as the .NET Compact Framework
for mobile devices, the .NET Micro
Framework for embedded systems,
and the .NET Core, a cross-platform
and cloud computing framework.

At its core though, .NET establishes
a standard class library, the
Common Language Runtime
(CLR) and support for multiple
programming languages. .NET
supports the creation of various
types of software, such as desktop,
server, and mobile applications.

Resources

→→https://en.wikipedia.org/wiki/
Code_injection
→→https://www.owasp.org/index.
php/Injection_Theory
→→https://www.owasp.org/index.
php/Testing_for_SQL_Injection_
(OTG-INPVAL-005)
→→https://cheatsheetseries.owasp.
org/cheatsheets/Injection_
Prevention_Cheat_Sheet.html

→→https://cheatsheetseries.owasp.
org/cheatsheets/SQL_Injection_
Prevention_Cheat_Sheet.html
→→https://dzone.com/articles/
what-are-injection-attacks
→→https://www.w3schools.com/
sql/sql_injection.asp

AppSec Advisor October 2019 Page 2

