Ransomware

Throughout 2019, state, local, tribal, and territorial (SLTT) government entities are increasingly encountering ransomware attacks resulting in significant network downtime, delayed services to constituents, and costly remediation efforts. As of September 24, 2019, the MS-ISAC received approximately 60% more reported ransomware incidents affecting SLTT governments in 2019 than for the entire year of 2018. Not only are victims at risk of losing access to their systems and files, but they may also experience financial loss due to legal costs, purchasing credit monitoring services for employees/customers, or ultimately deciding to pay the ransom. The effects of a ransomware attack are particularly catastrophic when they impact emergency services and critical infrastructure, such as 911 call centers and hospitals.

Ransomware is a type of malware that blocks access to a system, device, or file until a ransom is paid. This is achieved when the ransomware encrypts files on the infected system (crypto ransomware), threatens to erase files (wiper ransomware), or blocks system access (locker ransomware) for the victim. The ransom amount and contact information for the cyber threat actor (CTA) is typically included in a ransom note that appears on the victim’s screen after their files are locked or encrypted. Sometimes the CTA only includes contact information in the note and will likely attempt to negotiate the ransom amount once they are contacted.

Opportunistic and Strategic Ransomware Campaigns

- **Opportunistic** ransomware campaigns employ “spray and pray” tactics, techniques, and procedures (TTPs). The ransomware is propagated through user-initiated actions, such as clicking on a malicious link in a spam e-mail, visiting a malicious or compromised website, or via malvertising. A few variants of opportunistic ransomware spread via Server Message Block (SMB), sometimes through the use of the EternalBlue exploit. However, an initially opportunistic TTP, such as a victim opening a widespread malicious email attachment could turn into a strategic campaign, if the CTA takes further direct actions based on the specific target.

- **Strategic** ransomware campaigns occur when the victim is specifically targeted or, more often, the actors realize that a sensitive entity has been infected via initially opportunistic methods. After an initial network compromise, CTAs will map out the network to ensure the most critical data is identified and targeted during the ransomware encryption process. During this initial infection phase, CTAs seek to escalate privileges to an administrator or domain controller level, while also identifying and targeting data backups, so that the victim cannot easily regain control of the network or restore their files once their data is locked or encrypted. This helps ensure CTAs can deploy the ransomware fully across the network to achieve complete saturation. The ransom amount will often vary based on the CTA’s assessment of the victim’s network and data as well as their ability and need to pay.

Common Infection Vectors

Ransomware is primarily delivered through:

- Malicious attachments/links sent in an email. This is known as “malspam.”
- Network intrusion through poorly secured ports and services, such as Remote Desktop Protocol (RDP) (e.g. Phobos ransomware variant).
• Dropped by other malware infections (e.g., initial TrickBot infection leading to a Ryuk ransomware attack).
• Wormable forms of ransomware that exploit network vulnerabilities (e.g., the WannaCry ransomware variant).

Additionally, open source reporting indicates that CTAs are targeting managed service providers (MSPs) to push out the ransomware to multiple entities. This occurs when CTAs compromise an MSP and use their existing infrastructure to disseminate the ransomware to the MSP’s clientele. This exploits the trusted relationship between the customer and their MSP.

Decryption
Backing up important data is the single most effective way of recovering from a ransomware infection. If the victim has backup copies then they can restore their files once infected systems are quarantined.
• Organizations should ensure that backups are appropriately protected and stored offline or out-of-band, so that attackers cannot target them. Using cloud services could help mitigate ransomware infections since many retain previous versions of files, allowing you to roll back to the unencrypted from.
• With any backup strategy, it is important to verify that the backup data you are restoring from is not also infected.

In the event that backups are not an option, victims may consider:
• Checking available tools online to decrypt files, as security researchers have already broken the encryption algorithms for some ransomware variants. The NoMoreRansom Project has decryptors available for such variants and is available here: https://www.nomoreransom.org/
• Rebuilding the network from scratch.
• Paying the ransom, which is ultimately a business decision. The MS-ISAC does not encourage victims to pay the ransom as it further incentivizes this criminal behavior, but understands this may sometimes be the only available option.

Payment
The ransom demand is typically in the form of cryptocurrency, which is most often Bitcoin though this varies between variants. Ransom demands range from as little as several hundred dollars up to and exceeding one million dollars. It is not uncharacteristic to see multi-million-dollar ransom demands in the current threat landscape. The ransom note often entails a sense of urgency, designed to socially engineer victims into paying the ransom quickly. The CTA might also place additional pressure on the victim by increasing the ransom amount on scheduled intervals (e.g., every 24 hours). Additionally, the CTA might threaten to delete the decryption keys or data if the victim fails to pay or exceeds the predetermined ransom deadline.

Recommendations
The following recommendations are provided to help mitigate the risk of ransomware infections:
• Update or create an incident response plan that includes what to do during a ransomware event.
• If not already being done, perform regular system backups. As ransomware is known to delete Volume Shadow Copies, ensure that backups are created and stored off-site or out-of-band. Also, use a backup strategy that allows multiple iterations of the backups to
Traffic Light Protocol: WHITE

be saved and stored, in case the backups include encrypted or infected files. Routinely test backups for data integrity and to ensure you can recover from them.

- For any publicly-exposed services, such as Remote Desktop Protocol (RDP), Virtual Network Computing (VNC), and File Transfer Protocol (FTP), assess the need for exposure to the Internet. Consider applying additional controls, such as IP whitelisting or multi-factor authentication, where possible.
- Assess the need to have Remote Desktop Protocol (port 3389) and Server Message Block (SMB) (port 445) open on systems and, if required, consider limiting allowed connections to only specific, trusted hosts.
- Enable heightened monitoring for SMB activity throughout the network. Make sure to disable SMBv1 on all systems and utilize SMBv2 or SMBv3 after appropriate testing.
- Consider filtering inbound and outbound traffic based on IP addresses (and ports), leveraging geographic blocking and threat-based blocking.
- Implement filters at the email gateway to filter out emails with known malspam indicators, such as known malicious subject lines, and block suspicious IP addresses at the firewall.
- Provide end-user training to help users identify suspicious emails or links and ensure that users are aware of the potential dangers of opening unsolicited email attachments or links. Ensure that users are aware of any support policies and procedures in place for assistance.
- If you do not have a policy regarding suspicious emails, consider creating one and specify that all suspicious emails should be reported to the security and/or IT departments.
- Ensure all user accounts fall under (and are not exempt from) acceptable policies associated with password aging, password complexity, and account lockout.
- Perform network segmentation according to organizational functionality and apply access controls between trust zones.
- Adhere to the principal of least privilege, ensuring that users have the minimum level of access required to accomplish their duties. Limit administrative credentials to designated administrators.
- Review any vendor accounts and their associated passwords to ensure they have been changed from their default settings.
- If remote access for the user account is required by a third-party vendor, consider developing a process that keeps the user account disabled until access is needed.
- Implement more robust Windows Event logging, including an increase in the maximum file size for the Event Logs.
- Utilize application whitelisting technology on all assets to ensure that only authorized software executes and all unauthorized software is blocked from executing on assets. (CIS Subcontrol 2.7)
- Consider restricting PowerShell execution to signed scripts and trusted scripts used for administration.
- Ensure that the organization's anti-malware software updates its scanning engine and signature database on a regular basis. (CIS Subcontrol 8.2)
- Implement a centrally-managed, up-to-date anti-malware solution. In addition to valuable preventive and corrective capabilities, detective controls provided by anti-malware software are beneficial in providing awareness of any threats which may become active within the environment.
• Keep all operating systems, applications, and essential software up to date to mitigate potential exploitation by attackers. This also includes ensuring that any anti-virus solutions are kept up to date.
• If not already being done, consider implementing an Intrusion Detection System (IDS) to detect command and control (C2) activity and other potentially malicious network activity, such as the MS-ISAC’s Albert system.
• Ensure that systems are hardened with industry-accepted guidelines, such as those provided by the CIS Benchmarks division. (https://www.cisecurity.org/cis-benchmarks/)
• Review and consider implementation of the 20 CIS Controls, where appropriate, as a means of bolstering your organization’s security posture. (https://www.cisecurity.org/controls/)

The MS-ISAC is the focal point for cyber threat prevention, protection, response, and recovery for the nation’s state, local, tribal, and territorial (SLTT) governments. More information about this topic, as well as 24x7 cybersecurity assistance is available at 866-787-4722, SOC@cisecurity.org. The MS-ISAC is interested in your comments - an anonymous feedback survey is available.