
1

Living off the Land Attacks: PowerShell

Living off the Land Attacks

PowerShell

July 2022

i

Living off the Land Attacks: PowerShell Acknowledgments

Acknowledgments

The Center for Internet Security® (CIS) would like to thank the many security experts who volunteer their time and talent to
support the CIS Critical Security Controls® (CIS Controls®) and other CIS work. CIS products represent the effort of a veritable
army of volunteers from across the industry, generously giving their time and talent in the name of a more secure online
experience for everyone.

Ginger Anderson, CIS
Valecia Stocchetti, CIS

Jennifer Jarose, CIS

Editors

Contributor

This work is licensed under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International Public License (the link can be found at
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode).
To further clarify the Creative Commons license related to the CIS Controls® content, you are authorized to copy and redistribute the content as a
framework for use by you, within your organization and outside of your organization for non-commercial purposes only, provided that (i) appropriate
credit is given to CIS, and (ii) a link to the license is provided. Additionally, if you remix, transform, or build upon the CIS Controls, you may not distribute
the modified materials. Users of the CIS Controls framework are also required to refer to (http://www.cisecurity.org/controls/) when referring to the CIS
Controls in order to ensure that users are employing the most up-to-date guidance. Commercial use of the CIS Controls is subject to the prior approval
of the Center for Internet Security, Inc. (CIS®).

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://www.cisecurity.org/controls/

ii

Living off the Land Attacks: PowerShell Contents

Contents

July 2022 1

Introduction 1

PowerShell Overview 2
What is PowerShell? 2
Benefits of Using PowerShell 2
Attacks Using PowerShell 3
Why Implement Defenses Against PowerShell? 4

Purpose 5
What This Guide Covers 5
Who Should Use This Guide 5
How To Use This Guide 5

PowerShell Defenses 6
Manage Your PowerShell Environment 6
Secure Configurations for PowerShell 8
Malware Defenses for PowerShell 11
PowerShell Logging 13
Continuous Vulnerability Management for PowerShell 15
Email and Browser Protections Against Malicious PowerShell Activity 16
Security Awareness and Training 17

Conclusion 18

APPENDIX A Implementation Groups 19

APPENDIX B Related CIS Safeguards 20

APPENDIX C ATT&CK (Sub-)Techniques 22

APPENDIX D CIS Benchmark Recommendations 23

APPENDIX E Acronyms and Abbreviations 24

APPENDIX F References and Resources 25

1

Living off the Land Attacks: PowerShell Introduction

Introduction

The Center for Internet Security® (CIS) is the home of the CIS Critical Security Controls®
(CIS Controls®), well-regarded and widely-used best practice recommendations that help
enterprises focus their resources on the most critical actions to defend against the most
prevalent real-life attacks. The community of volunteer experts who develop the CIS Controls
come from a wide range of sectors, including defense, academia, government, healthcare,
manufacturing, retail, and transportation.

In keeping with the CIS Controls’ mission to provide prioritized, simplified, and relevant
defensive guidance against real and current threats, CIS developed the CIS Community
Defense Model (CDM). The CIS CDM takes a structured approach and looks at threat
assessments published from multiple reliable sources to provide defenders prioritized
best practices that defend against the top five most common attacks observed across the
community. While Cyber Threat Actors (CTAs) use proprietary or commodity malware and
other attack vectors to compromise a system, they also use and abuse tools that are native
to the operating system, commonly referred to as Living off the Land (LotL) attacks. CIS
recognizes the use of specific attack vectors, such as exploits of commonly used protocols,
which is why CIS has also published several guides that provide more specific guidance for
defenders to address LotL attacks.

Over the past few years, the community observed an increase in tactics, techniques, and
procedures (TTPs) used by CTAs to evade detection and maximize the impact of their
attacks. These TTPs include the use of post-exploitation tools (e.g., Mimikatz, CobaltStrike,
or Metasploit®), the use of legitimate and allowlisted network administration tools (e.g.,
PowerShell® and PsExec), and the use of native protocols, including (Remote Desktop Protocol
(RDP), Server Message Block (SMB), and Windows® Management Instrumentation (WMI)).
The use of legitimate administrative tools, post-exploitation tools, and native protocols to
target and exploit a network poses unique challenges to an enterprise looking to increase their
defenses against cyber attacks.

CIS, as previously mentioned, has published several guides addressing some of the TTPs
outlined in the previous paragraph. The guides provide prioritized best practice guidance to
address some of the most commonly used vectors and exploited protocols to conduct attacks,
such as RDP, SMB, and WMI. This guide, “Living off the Land: PowerShell,” is next in the series
of LotL guides. It will cover the use of this legitimate network administration tool that is often
used in cyber attacks, as well as provide guidance to defenders on how they can protect
against a PowerShell-based attack.

https://www.cisecurity.org/white-papers/cis-community-defense-model-2-0/
https://www.cisecurity.org/white-papers/cis-community-defense-model-2-0/
https://www.cisecurity.org/white-papers/cis-community-defense-model-2-0/
https://www.cisecurity.org/insights/white-papers/exploited-protocols-remote-desktop-protocol-rdp
https://www.cisecurity.org/insights/white-papers/cis-controls-v8-exploited-protocols-server-message-block-smb
https://www.cisecurity.org/insights/blog/how-to-defend-against-windows-management-instrumentation-attacks

2

Living off the Land Attacks: PowerShell PowerShell Overview

PowerShell Overview

What is PowerShell?

PowerShell is a powerful tool used for task automation and configuration management that
is built on the .NET framework. It consists of a command shell and scripting language and
is supported on multiple platforms including Windows®, Linux®, and macOS®. PowerShell
can also be used over port 5985 (Hypertext Transfer Protocol (HTTP)) and 5986 (Hypertext
Transfer Protocol Secure (HTTPS)) as PowerShell remoting using Windows Remote
Management (WinRM). PowerShell remoting allows a user to run commands remotely
from another system, and is often used by administrators for Information Technology
(IT) management.

The flexibility and wide-scale usage of PowerShell makes it particularly challenging to secure
since it is a legitimate administrative tool that is often abused by CTAs and commonly used
in LotL attacks. LotL attacks involve the use of existing tools and tactics on the targeted
system or network to carry out an attack, rather than exploit a specific system or control
weakness, rendering the attack difficult to detect and defend. Unfortunately, simply blocking
the PowerShell executable is not a viable solution, nor is it effective, since PowerShell can be
invoked in a number of ways without using the actual executable—and is often used this way.
Additionally, a number of legitimate applications use PowerShell to perform everyday business
functions. Therefore, a more strategic and multi-faceted approach is necessary to secure
against an attack using PowerShell. It is important to note that throughout this guide, none
of the recommendations are a single “silver bullet” to preventing a successful attack using
PowerShell. Instead, taking a defense-in-depth approach will help to secure PowerShell.

Benefits of Using PowerShell

PowerShell is a robust tool that helps IT professionals automate a range of tedious and time-
consuming administrative tasks as well as find, filter, and export information about a system
on a network through combining commands, called cmdlets, and creating scripts.

The text-based command-line interface allows administrators the ability to achieve more
granular control over system management. With PowerShell, a user can improve access to
WMI and Control Object Model (COM) to fine-tune administrative management. For those
tasked with managing Active Directory (AD), PowerShell automation is extremely helpful
for executing management tasks such as adding or deleting accounts, editing groups, and
creating listings to view specific types of groups or users. For those administrators that need
to repeatedly run command sequences for system configurations, PowerShell offers the
Integrated Scripting Environment (ISE) which allows users to develop scripts as command
collections with the ability to include logic necessary for execution. Additionally, the use of
cmdlets, PowerShell’s basic single-function command, is a powerful capability that allows an
administrator to combine cmdlets, use them within scripts, and create more robust modules.
Cmdlets also create the capability to use PowerShell as a programming language due to its
underlying .NET Framework. This means that cmdlets can be combined by a user to work
together and facilitate configuration of data and systems.

In general, PowerShell provides scalability, the ability to simplify management tasks, and
generate insights into devices on a network quickly. The most commonly seen uses often
transform workflows through:

 • Automation. Administrators are able to automate tasks through the use of cmdlets as
opposed to manual configuration for more tedious tasks.

3

Living off the Land Attacks: PowerShell PowerShell Overview

 • Shortcuts. Administrators are able to use PowerShell to work around software constraints.
An example is an IT administrator who pushes out configuration settings (e.g., password
policy) for an application to all systems across the network.

 • Scalability. IT administrators are constantly in need of obtaining information from systems
to ensure that they are kept up-to-date and tracked in inventory accordingly. Doing this
manually from system to system, especially in a larger enterprise, is near impossible. With
PowerShell, administrators are able to automate the collection of data from enterprise
assets in a short amount of time, saving resources that can be used for other tasks.
Additionally, with the use of PowerShell remoting, administrators are able to create scripts
designed for scale, reaching a large group of systems on the network to conduct activities
such as installing updates, establishing configuration settings, and more.

 • Visibility. Most of the data on an operating system is not easily viewable or discoverable;
for example, the Windows Registry and digital signature certificates. PowerShell provides
visibility into these files and more through the use of the command-line, making it easier for
collection and analysis.

Attacks Using PowerShell

Unfortunately, CTAs realize the versatility and usefulness of PowerShell as a tool and have
weaponized it to conduct cyber attacks. Even as far back as 2016, Carbon Black reported
at least 38%1 of observed incidents by Carbon Black® and partners included PowerShell
use as part of the attack. The majority, approximately 87%2, used PowerShell in commodity
malware such as click fraud, fake anti-virus, and opportunistic malware. Only 13%3 of the
attacks using PowerShell seemed to be targeted. In more recent years, approximately 49%4 of
threats analyzed used PowerShell in the attack chain, according to Red Canary’s 2021 Threat
Detection Report.

PowerShell has been used in several cyber attacks, including Trojans, backdoors, and
ransomware, to name a few. This is because CTAs can use PowerShell for a variety of
objectives. For example:

 • CTAs can evade defenses. Due to PowerShell being a native Windows tool and functional
on other platforms such as Linux and macOS, CTAs are able to use it without raising red
flags since it is also used by IT professionals – evading traditional network defenses. CTAs
can also use PowerShell to disable critical threat detection tools, such as anti-malware
applications.

 • CTAs can use PowerShell to automate activities. Through the use of the Windows
Application Programming Interface (API), PowerShell is able to be easily used by CTAs,
allowing them to automate tasks and evade detection.

 • CTAs can easily access PowerShell modules that are widely available on many open
source platforms. This also means that CTAs are able to modify PowerShell and use it for
malicious purposes.

 • CTAs are able to escalate privileges and execute PowerShell scripts via the command-line
or in memory, evading detection from traditional anti-malware applications. PowerShell
can also be used to perform remote code execution from another machine on the network
with the potential to move laterally elsewhere on the network. CTAs may also leave
backdoors on the system to carry out additional malicious activity in the future.

1 https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/docs/vmwcb-report-powershell-deep-dive.pdf
2 https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/docs/vmwcb-report-powershell-deep-dive.pdf
3 https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/docs/vmwcb-report-powershell-deep-dive.pdf
4 https://resource.redcanary.com/rs/003-YRU-314/images/2021-Threat-Detection-Report.pdf

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/docs/vmwcb-report-powershell-deep-dive.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/docs/vmwcb-report-powershell-deep-dive.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/docs/vmwcb-report-powershell-deep-dive.pdf
https://resource.redcanary.com/rs/003-YRU-314/images/2021-Threat-Detection-Report.pdf

4

Living off the Land Attacks: PowerShell PowerShell Overview

 • CTAs can write malware in PowerShell. Examples include: Netwalker, RogueRobin,
PowerWare, and POWELIK.

 • CTAs can use post-exploitation frameworks (e.g., CobaltStrike, PowerSploit, PowerShell
Empire, Mimikatz), which leverage PowerShell components, to compromise a network and
steal credentials.

 • CTAs can use social engineering to send a macro-enabled document, subsequently
launching PowerShell.

 • CTAs can encode payloads using the command-line and load PowerShell into
other processes.

 • CTAs can use scripts, such as WScript and CScript, to bypass script-based constraints on
operating systems.

 • CTAs can increase their attack surface by using other applications, such as the WMI
command-line, to run scripts.

Why Implement Defenses Against PowerShell?

As noted, PowerShell is an extremely powerful and widely available tool for both legitimate
use and malicious activity. It is often unrealistic to expect an enterprise to completely
disable, block, or avoid use of PowerShell within its environment. However, unmanaged use
of PowerShell can lead to unnecessary risk and avoidable cyber incidents. It is important
to implement defensive processes and measures, such as understanding and managing
your PowerShell environment, securely configuring PowerShell, malware defenses, logging,
continuous vulnerability management, email and browser protections, and security and
awareness training. By taking these measures, an enterprise can effectively take advantage of
the benefits of PowerShell while minimizing their risk of exploitation.

5

Living off the Land Attacks: PowerShell Purpose

Purpose

This PowerShell guide is intended to be part of a series of LotL guides that help enterprises
prioritize common exploits and attack vectors used by CTAs to conduct cyber attacks. These
LotL TTPs are prioritized due to the CTA’s ability to effectively use them to obfuscate activity
and bypass common security measures, requiring a more robust defense strategy. This
guide is designed to simplify and prioritize actionable defenses for security professionals
in an overwhelming world of information. It is simple enough to be used by novice security
professionals, yet flexible and detailed enough to meet experienced professionals’ needs.
CIS focuses on supporting the small and medium enterprises (SMEs) in need of clear and
simplified guidance.

This guide covers the defensive measures recommended by CIS to protect an enterprise
against the use of the native tool, PowerShell, in a cyber attack. Those defensive measures
include managing the PowerShell environment, secure configuration of PowerShell, malware
defenses for PowerShell, PowerShell logging, continuous vulnerability management
of PowerShell, email and browser protection against PowerShell, and security and
awareness training.

This guide is designed to be user friendly for all IT security professionals ranging from novice
to experienced. It is specifically designed to target SMEs who may be under-resourced, but is
flexible enough to be adopted by larger enterprises.

This guide is divided into seven sections outlining major defensive processes and
recommendations to protect against PowerShell-based attacks. Each section is broken
down into four major subsections: an explanation of the relevance of the defensive measure,
a description of how to best implement it, CIS Controls and CIS Benchmarks™ that are
applicable to the implementation of the defensive measure, and finally, any relevant MITRE
Adversarial Tactics, Techniques and Common Knowledge (ATT&CK®) (Sub-)Techniques that
may be used in an environment without the defensive measures. The seven sections are linked
and intended to be cross-referenced to ensure the most effective implementation of the guide.
It is important that an enterprise adapts the guidance to best fit their individual environment.

What This Guide Covers

Who Should Use
This Guide

How To Use This Guide

6

Living off the Land Attacks: PowerShell PowerShell Defenses

PowerShell Defenses

5 PowerShell v7.2 is a Long Term Servicing (LTS) release (built on .NET 6.0). It will be supported by Microsoft until November 30, 2024.

Manage Your PowerShell Environment

In order to defend your network, you must first know what is on your network. This involves
activities such as inventory and control of enterprise assets and software (CIS Controls 1 and
2), data protection (CIS Control 3), and account/access management (CIS Controls 5 and 6).
To defend against an attack abusing PowerShell, an enterprise must first know which assets
have PowerShell enabled, which version those assets are operating on, which accounts have
access, and the level of access granted to those users (e.g., user vs. administrator). Since
PowerShell is a commonly used built-in administrative tool, it is important to identify and
manage access since it can also be abused by CTAs.

As previously mentioned, keeping track of inventory for enterprise assets and software is
the first step. This can be done by using a simple spreadsheet, such as CIS’s Asset Tracking
Spreadsheet, or by using tooling to automate the process. Without taking this critical first
step, the remaining Safeguards become difficult to implement, as many are dependent on this
singular Safeguard (1.1).

Using up-to-date software is also important. Currently, PowerShell v7.25 is the most recent
and supported version available. If your enterprise uses PowerShell, it is recommended to
use PowerShell v7.2 and above, as this version has enhanced security and logging features.
Additionally, removing older versions of PowerShell is also recommended, since they are
generally less secure, not updated, and open to exploitation. For example, PowerShell v2 has
since been deprecated and, if installed, should be disabled or uninstalled. If not removed,
CTAs can use this outdated version of PowerShell to bypass security features or impair
defenses that would otherwise be detected if an updated version of PowerShell was used. This
is referred to as a downgrade attack.

In addition to enterprise asset and software management, maintaining an inventory of
accounts is recommended to properly manage access to PowerShell. This includes managing
access during onboarding and offboarding. As mentioned previously, most users outside
of IT generally do not need access to PowerShell, especially PowerShell remoting, as this
is primarily used by administrators for remote management. Therefore, it may seem like a
logical next step to restrict PowerShell across the board. However, in doing so, there may be
implications that are not as obvious. An example is software that uses PowerShell code and/
or scripts for installation. There are several ways to limit or restrict the use of PowerShell.
One common method is to use software for application control to perform allowlisting or
blocklisting that will limit the use of PowerShell on a system, including the ability to block
commands that are generally used to bypass security. This can be done using technologies,
such as Windows Defender Application Control (WDAC), a security feature in Microsoft®
Security Response Center (MSRC), or AppLocker®. Other commercial offerings may also be
used to control PowerShell.

Why is This Important?

Implementation

https://www.cisecurity.org/insights/white-papers/cis-hardware-and-software-asset-tracking-spreadsheet
https://www.cisecurity.org/insights/white-papers/cis-hardware-and-software-asset-tracking-spreadsheet
https://endoflife.date/powershell

7

Living off the Land Attacks: PowerShell PowerShell Defenses

Enterprises may also control access using role-based access control (RBAC) to restrict
PowerShell for only specific roles in the enterprise. Beyond RBAC, restrictions for PowerShell
access can even be more granular, allowing administrators the ability to only perform specific
actions on a system, rather than granting a blanket administrator account that allows all
privileges. This addresses the principle of least privilege, where users only have access to
what is necessary in order to complete their tasks. Starting with PowerShell v5 and above,
Just Enough Administration (JEA) is a feature that can assist with the least privilege principle
and is used to delegate administrative functions for anything managed by PowerShell. JEA
is available in Windows 10 and above and is used through PowerShell remoting. Overall, JEA
helps lower the number of administrator accounts on an enterprise’s network and reduces the
damage that a CTA could do if they gain access to a privileged account.

SAFEGUARD TITLE IG1 IG2 IG3

1.1 Establish and Maintain Detailed Enterprise Asset Inventory ✓ ✓ ✓

2.1 Establish and Maintain a Software Inventory ✓ ✓ ✓

2.2 Ensure Authorized Software is Currently Supported ✓ ✓ ✓

2.5 Allowlist Authorized Software ✓ ✓

2.6 Allowlist Authorized Libraries ✓ ✓

2.7 Allowlist Authorized Scripts ✓

5.1 Establish and Maintain an Inventory of Accounts ✓ ✓ ✓

5.4 Restrict Administrator Privileges to Dedicated Administrator Accounts ✓ ✓ ✓

6.1 Establish an Access Granting Process ✓ ✓ ✓

6.2 Establish an Access Revoking Process ✓ ✓ ✓

6.8 Define and Maintain Role-Based Access Control ✓

ATT&CK (SUB-)TECHNIQUE ID ATT&CK (SUB-)TECHNIQUE TITLE

T1059.001 Command and Scripting Interpreter: PowerShell

T1562.010 Impair Defenses: Downgrade Attack

CIS BENCHMARK
SECTION #

RECOMMENDATION # TITLE

18.9.103 18.9.103.1 (L2) Ensure ‘Allow Remote Shell Access’ is set to ‘Disabled’

Related CIS Critical
Security Controls

Related MITRE ATT&CK
(Sub-)Techniques

Related CIS Microsoft
Windows 10 Enterprise
Benchmark v1.12.0

8

Living off the Land Attacks: PowerShell PowerShell Defenses

Secure Configurations for PowerShell

Equally important to managing an enterprise’s assets and software, is ensuring they are
securely configured. This also means not just accepting the default configurations as “secure,”
as many are designed with ease-of-use in mind as opposed to security. With PowerShell, there
are several areas to consider when establishing secure configurations.

There is not one “silver bullet” solution to securing PowerShell. The same goes for configuring
PowerShell. Due to its wide-array of usage, securely configuring PowerShell requires careful
testing and quality assurance to determine whether or not a configuration will negatively
impact day-to-day activities that are required to run the enterprise. The following guidance is
not a one-size-fits-all approach and may need to be tailored to fit the enterprise’s needs.

Some general best practice recommendations for securing PowerShell include establishing
a baseline of PowerShell activity. This step is important, especially for monitoring devices, so
the application can learn what is normal vs. abnormal. Additionally, disable any components
that are not needed with PowerShell. If there is not a business need, then remove the access.
Certain applications may also be able to block PowerShell scripts so they only run from a
specific location or path. This is helpful to limit the attack surface where PowerShell can be
abused. PowerShell can also be restricted or blocked from performing activities that are used
by CTAs, such as invoking commands on remote systems or downloading content via the
internet. How these configurations are established will vary depending on the application
being used to implement the controls as well as the needs of the enterprise (e.g., block
at the user-level, application-level, command-level, etc.). Additionally, script signing and
refraining from storing sensitive information (e.g., credentials) in a PowerShell script itself are
best practices to follow. If credentials are required for the performance of a script, controls
surrounding the protection of those credentials should be deployed.

There are also some key Windows-specific configurations that can be set to help secure
PowerShell. For example, enterprises can use the ‘Turn on Script Execution’ Group Policy
setting in Windows to control which types of scripts are allowed to be executed on a system.
There are seven PowerShell execution policies: AllSigned, Bypass, Default, RemoteSigned,
Restricted, Undefined, and Unrestricted. For Windows servers, RemoteSigned is the default
policy, meaning that scripts can run if they have a digital signature for scripts and files that are
downloaded from the internet. For added security, enterprises can change this to AllSigned,
which will require all scripts, including those downloaded from the internet and those that
are written in-house, to be signed by a trusted publisher. On Windows clients, Restricted is
the default policy, meaning that the user can still run commands, but not scripts (including
‘.ps1xml,’ ‘.psm1,’ and ‘.ps1’ files). It is important to note that the Execution Policy configuration
reduces the risk of unintentional violations involving PowerShell, however, users may still
be able to bypass this policy by typing scripts into the command-line directly depending
on environmental configurations. This configuration is not intended to stop the bad, but
rather determine the bad from good. For example, an attack that reaches out to download
an unsigned PowerShell script online may be stopped by implementing the RemoteSigned
or AllSigned policies. However, it would not stop a CTA who had “hands on keyboard”
access from invoking PowerShell via the command-line. In the event that a CTA does bypass
the PowerShell Execution Policy, a review of the Windows Registry Key, ‘HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell\ Value:
ExecutionPolicy’ would be able to provide the last modified timestamp, which may be helpful
during a forensic investigation. This review can be done by exporting the key to a text file in
order to show the Last Write Time.

Why is This Important?

Implementation

9

Living off the Land Attacks: PowerShell PowerShell Defenses

Administrators may also use PowerShell profiles, which are scripts that execute when
PowerShell starts, for the customization and automation of certain activities. For example,
they may configure a profile (e.g., script) that gets triggered upon a user logging in. Different
profiles also exist for different applications, such as profiles for the Windows PowerShell
Integrated Scripting Environment (ISE) or Windows PowerShell console. These PowerShell
profiles, while helpful, can also be modified by a CTA to carry out malicious actions, such
as establishing persistence mechanisms. Securing these profiles by making them unable
to be changed and/or limited to modification by a restricted group of administrators is
recommended for reducing this risk. One area that profiles can be controlled is within the
PowerShell Execution Policy, where scripts and configuration files (to include profiles) can be
prevented from running under the Restricted setting. Careful consideration should be taken
when setting these policies, as certain environments may warrant more or less access to
PowerShell depending on the business need.

In addition to setting the PowerShell Execution Policy, enterprises may also use Configuration
Manager, now a part of Microsoft Endpoint Manager, to review and approve scripts. For
example, if an administrator would like to have their script approved, they would submit
it for review. Once the administrator that has the script approver role reviews it, they can
choose to approve or deny it. By implementing this best practice, it also enforces separation
of duties by preventing the author of the script from also being the approver. As a warning,
some PowerShell scripts may be obfuscated, making it difficult to detect malicious behavior.
Administrators should deploy the use of script-checking tools, such as PSScriptAnalyzer, to
help perform script reviews. However, it is ultimately up to the script approver to determine
whether or not a script has malicious intent and approve or deny.

Another area commonly abused by CTAs is PowerShell parameters, which are components of
a script. An enterprise can securely use PowerShell parameters by only allowing pre-defined
ones and using the regular expression feature to define those parameters so that permitted
characters are established up front. A PowerShell module, called InjectionHunter, can also be
used to detect malicious code that could lead to an injection attack. Additionally, Microsoft
Visual Studio offers tools to check PowerShell syntax.

PowerShell has four main language modes that determine which elements are and are not
allowed in a PowerShell session: FullLanguage, ConstrainedLanguage, RestrictedLanguage,
and NoLanguage. One way to reduce the risk of a PowerShell attack is to enable
ConstrainedLanguage Mode. This mode allows all cmdlets and language elements, but is
used to restrict data types in PowerShell to only a set list of allowed types. When used on
its own through setting the LanguageMode, ConstrainedLanguage Mode is not a security
feature, as it can be easily bypassed by opening another PowerShell session. However,
when used in conjunction with an application control solution, such as Device Guard or
AppLocker, PowerShell can be set to run in ConstrainedLanguage Mode, disabling access to
features such as .COM objects and system APIs. This cannot be overridden easily, making it
a stronger defense in the event of a PowerShell attack. It is important to note that the more
restrictions placed, the more likely it is to impact day-to-day business functions. For example,
an administrator that has an approved script may find that it no longer will execute. In this
instance, the scripts can be added to the Device Guard policy and will then be able to run in
FullLanguage Mode.

PowerShell can also be used remotely, called PowerShell remoting, through the Windows
Remote Management (WinRM) protocol, as mentioned previously. WinRM listens on ports
5985 (HTTP) and 5986 (HTTPS) and uses the WinRM service to connect remotely and run
commands. If not needed, it is recommended to restrict and/or disable, if possible, access
to WinRM. Additionally, other configuration guidelines for WinRM from the CIS Microsoft
Windows 10 Enterprise Benchmark can be seen in the table below.

10

Living off the Land Attacks: PowerShell PowerShell Defenses

SAFEGUARD TITLE IG1 IG2 IG3

4.1 Establish and Maintain a Secure Configuration Process ✓ ✓ ✓

4.2 Establish and Maintain a Secure Configuration Process for Network
Infrastructure

✓ ✓ ✓

4.4 Implement and Manage a Firewall on Servers ✓ ✓ ✓

4.5 Implement and Manage a Firewall on End-User Devices ✓ ✓ ✓

4.8 Uninstall or Disable Unnecessary Services on Enterprise Assets and Software ✓ ✓

ATT&CK (SUB-)TECHNIQUE ID ATT&CK (SUB-)TECHNIQUE TITLE

T1059.001 Command and Scripting Interpreter: PowerShell

T1546.013 Event Triggered Execution: PowerShell Profile

CIS BENCHMARK
SECTION #

RECOMMENDATION # TITLE

18.9.102.1 18.9.102.1.1 (L1) Ensure ‘Allow Basic authentication’ is set to ‘Disabled’

18.9.102.1 18.9.102.1.2 (L1) Ensure ‘Allow unencrypted traffic’ is set to ‘Disabled’

18.9.102.1 18.9.102.1.3 (L1) Ensure ‘Disallow Digest authentication’ is set to ‘Enabled’

18.9.102.2 18.9.102.2.1 (L1) Ensure ‘Allow Basic authentication’ is set to ‘Disabled’

18.9.102.2 18.9.9102.2.2 (L2) Ensure ‘Allow remote server management through WinRM’ is set
to ‘Disabled’

18.9.102.2 18.9.9102.2.3 (L1) Ensure ‘Allow unencrypted traffic’ is set to ‘Disabled’

18.9.9102.2 18.9.9102.2.4 (L1) Ensure ‘Disallow WinRM from storing RunAs credentials’ is set to
‘Enabled’

5 5.40 (L2) Ensure ‘Windows Remote Management (WS-Management)
(WinRM)’ is set to ‘Disabled’

Related CIS Critical
Security Controls

Related MITRE ATT&CK
(Sub-)Techniques

Related CIS Microsoft
Windows 10 Enterprise
Benchmark v1.12.0

11

Living off the Land Attacks: PowerShell PowerShell Defenses

Malware Defenses for PowerShell

Traditional anti-malware applications use signature-based detections to identify malware.
However, with the increase in fileless malware attacks and LotL attacks over the past few
years, it has forced the industry to re-think how malware is detected, prompting the need for
heuristic-based algorithms. PowerShell, among other scripting languages, can be invoked
directly in memory and execute commands to download a payload remotely, bypassing
security controls and leaving little to no artifacts on disk for defenders to identify and analyze.

Malware that uses PowerShell can allow for activities such as privilege escalation, obfuscation,
and remote code execution. In recent years, there are several malware variants that have
weaponized PowerShell, including Netwalker, RogueRobin, PowerWare, and POWELIK.
In addition, it is used by many legitimate post-exploitation frameworks (e.g., Metasploit,
PowerSploit, and Mimikatz) that can also double as a weapon used by CTAs to exploit systems
and steal credentials. Another popular TTP among CTAs is using macro-enabled Office
documents, allowing them to launch PowerShell scripts and take control of a system remotely.
The bottom line is that attacks using PowerShell are not going away anytime soon, which is
why it is important to enhance defenses while still utilizing PowerShell for day-to-day work.

With the growing trend toward fileless malware, especially malware using PowerShell, it is
important to implement technologies that have the ability to detect and defend against these
complex attacks. It is best practice to implement anti-malware applications on enterprise
assets, as well as update anti-malware signature updates. However, if an enterprise has
the resources and budget, using an application that is behavior-based (e.g., uses heuristic
analysis), will allow an enterprise to detect more advanced PowerShell attacks. Several anti-
malware applications and other technologies (e.g., Endpoint Detection and Response (EDR)
solutions) employ the use of heuristic-based analysis. For example, if using an EDR solution,
it can detect the Dynamic Link Library (DLL) ‘System.Management.Automation.DLL’ – a
common library used by CTAs to execute PowerShell commands.

Another technology available for detecting malicious PowerShell usage is with Microsoft’s
Antimalware Scan Interface (AMSI). Starting with Windows 10 in 2015, AMSI was released –
a vendor-agnostic interface that can be integrated into other anti-malware products on the
Windows platform. Its main purpose is to scan the contents of a script prior to execution to
determine if it is safe. AMSI is integrated into several areas of Windows 10 including User
Account Control (UAC), Windows Script Host, JavaScript, Visual Basic Script (VBS), Visual
Basic for Applications (VBA) Macros, and PowerShell. It can be used by developers and
vendors in slightly different ways. For a developer, AMSI can be extremely helpful to review
code blocks and ensure that they do not contain malicious code, especially with the increase
of using code from third-parties. For a vendor, AMSI can be integrated into their product
through the AMSI API interface. Unfortunately, AMSI has been attacked and bypassed
successfully by CTAs, as we see with many legitimate tools. With the continued use of
obfuscation combined with evasive methods to bypass detections, this is another tool that can
be used, but not to be relied upon for complete mitigation.

SAFEGUARD TITLE IG1 IG2 IG3

10.1 Deploy and Maintain Anti-Malware Software ✓ ✓ ✓

10.2 Configure Automatic Anti-Malware Signature Updates ✓ ✓ ✓

10.5 Enable Anti-Exploitation Features ✓ ✓

10.6 Centrally Manage Anti-Malware Software ✓ ✓

10.7 Use Behavior-Based Anti-Malware Software ✓ ✓

13.7 Deploy a Host-Based Intrusion Prevention Solution ✓

13.8 Deploy a Network Intrusion Prevention Solution ✓

Why is This Important?

Implementation

Related CIS Critical
Security Controls

12

Living off the Land Attacks: PowerShell PowerShell Defenses

ATT&CK (SUB-)TECHNIQUE ID ATT&CK (SUB-)TECHNIQUE TITLE

T1059.001 Command and Scripting Interpreter: PowerShell

CIS BENCHMARK
SECTION #

RECOMMENDATION # TITLE

18.9.47.5.1 18.9.47.5.1.1 (L1) Ensure ‘Configure Attack Surface Reduction rules’ is set to
‘Enabled’

18.9.47.5.1 18.9.47.5.1.2 (L1) Ensure ‘Configure Attack Surface Reduction rules: Set the state for
each ASR rule’ is configured

Related MITRE ATT&CK
(Sub-)Techniques

Related CIS Microsoft
Windows 10 Enterprise
Benchmark v1.12.0

13

Living off the Land Attacks: PowerShell PowerShell Defenses

PowerShell Logging

Log collection and analysis is critical for an enterprise to detect a potential cyber attack.
Unfortunately, CTAs can use PowerShell to carry out malicious activities, including clearing
event logs, which is why it is important to not only collect logs, but also protect them. If all
other defenses fail, logging and monitoring may end up being your main line of defense.

Logs can be extremely helpful in providing information. For example, the time of execution
for an application and the associated user account it was executed under. With PowerShell,
there are several PowerShell-specific logs as well as other audit logs that can help with
detection. During an incident, logs can help the enterprise understand the extent of an attack,
including when an attack occurred, what systems were impacted, and what data may have
been accessed/exfiltrated. The retention period of logging is also important. Logs that do not
go back far enough may impact the investigation of an attack, especially if the attack has gone
undetected for a long period of time. Bottom line, if you want to detect a PowerShell attack, it
starts with logging.

While logging from anti-malware applications and EDR platforms are extremely beneficial
for enhancing visibility and detecting a wide variety of attacks, some of the most detailed
information about PowerShell activity on a system can be captured by enabling simple
configuration settings in the Windows environment. There are four main types of PowerShell
logging that can be enabled. Transcription logging is one type of logging for PowerShell
that can be enabled to log input (commands) and output from a PowerShell session to a
specified location in the form of a text file. When enabled, it can tell you several pieces of
information, including the username, the date and time of when the session was started, the
machine name, the host application, and process ID. Similar to bash history on a Linux system,
transcription logging creates a running file of every PowerShell command entered and result
generated. Additionally, an option to include invocation headers can be selected to record
the timestamps for executed commands. These details can be particularly useful for incident
response purposes to determine what specific commands may have been used by a CTA.

Another popular logging type that can be enabled is Script Block logging, which is available
in PowerShell v5 and above (in Windows 10). Script Block logging captures entire PowerShell
script blocks just before it is delivered to the PowerShell engine to execute. An additional
setting can be enabled, called invocation logging, that will record the start and stop times of
an invoked command. This type of logging can be particularly useful because it also captures
de-obfuscated code, since it captures it before execution. This can be extremely helpful in the
event of an attack to determine what was actually done on the system(s). Since the default
configuration only logs PowerShell script blocks the first time they are used, enterprises may
choose to select ‘Log script block invocation start / stop events’ to capture the start and stop
times when commands and scripts are invoked. This can also be helpful information during
incident response, however, caution should be taken since this setting may generate a high
volume of events.

When enabling Script Block logging, enterprises also have the option to enable Protected
event logging. Previously, IT administrators acknowledged the risk of revealing sensitive
information in PowerShell logs, such as credentials used within a script. With Protected event
logging, local logs are encrypted to prevent a CTA from obtaining this sensitive information.
This allows the enterprise to later decrypt the logs in a more secure space; for example, a
Security Information and Event Management (SIEM) or other centralized logging platform.
The logs are encrypted with the Cryptographic Message Syntax (CMS) standard and use
public key (asymmetric) cryptography. It is important to note that in order to use Protected
event logging, Script Block logging must also be enabled. While these are two separate
configurations, they work in tandem.

Why is This Important?

Implementation

14

Living off the Land Attacks: PowerShell PowerShell Defenses

Module logging captures the execution of modules in PowerShell, including de-obfuscated
code and outputs. Through the use of Group Policy Objects (GPOs), an enterprise can choose
to configure Module logging for specific modules (e.g., Microsoft.PowerShell.*, Microsoft.
WSMan.Management) or they may choose to capture all modules using the wildcard symbol
(*). The use of the wildcard may be particularly helpful during monitoring and incident
response to detect any custom modules that are used by a CTA.

Once PowerShell logging is enabled, an enterprise can review the following logs for
PowerShell-related events:

 • Windows PowerShell.evtx
 • Microsoft-Windows-PowerShell/Operational.evtx
 • Microsoft-Windows-PowerShell/Analytic.etl (disabled by default)
 • Microsoft-Windows-WinRM/Operational.evtx
 • Microsoft-Windows-WinRM/Analytic.etl (disabled by default)
 • PowerShellCore/Operational
 • PowerShellCore/Analytical

While not PowerShell-specific, enabling command-line audit logs can also be beneficial for
capturing details of the command-line arguments used. These details are captured in the Windows
Security Event Log and can be set through Group Policy by setting the ‘Include command line
in process creation events’ GPO to enabled. This policy setting determines what information
is logged in security audit events when a new process has been created. A configuration will
also need to be set under ‘Audit Process Creation’ setting, where options for enabling Success
and/or Failure events can be set. At a minimum, successful events should be logged.

As with any type of logging, it is important to ensure that some logs may generate a high
volume of events. Tuning these features appropriately is important to ensure that critical
details are being captured without causing additional issues (e.g., log alert fatigue, reduced
storage capacity). Additionally, as increased verbosity of logging can also divulge sensitive
information, it is good practice to store logs in a centralized location off of the local system, if
possible. If log centralization is not possible, local user access can be denied from accessing
event logs as an alternative mitigation.

SAFEGUARD TITLE IG1 IG2 IG3

8.1 Establish and Maintain an Audit Log Management Process ✓ ✓ ✓

8.2 Collect Audit Logs ✓ ✓ ✓

8.3 Ensure Adequate Audit Log Storage ✓ ✓ ✓

8.4 Standardize Time Synchronization ✓ ✓

8.5 Collect Detailed Audit Logs ✓ ✓

8.6 Collect DNS Query Audit Logs ✓ ✓

8.7 Collect URL Request Audit Logs ✓ ✓

8.8 Collect Command-Line Audit Logs ✓ ✓

8.9 Centralize Audit Logs ✓ ✓

8.10 Retain Audit Logs ✓ ✓

8.11 Conduct Audit Log Reviews ✓ ✓

CIS BENCHMARK
SECTION #

RECOMMENDATION # TITLE

18.9.100 18.9.100.1 (L1) Ensure ‘Turn on PowerShell Script Block Logging’ is set to ‘Enabled’

18.8.3 18.8.3.1 (L1) Ensure ‘Include command line in process creation events’ is set to ‘Enabled’

ATT&CK (SUB-)TECHNIQUE ID ATT&CK (SUB-)TECHNIQUE TITLE

T1070.001 Indicator Removal on Host: Clear Windows Event Logs

Related CIS Critical
Security Controls

Related CIS Microsoft
Windows 10 Enterprise
Benchmark v1.12.0

Related MITRE ATT&CK
(Sub-)Techniques

15

Living off the Land Attacks: PowerShell PowerShell Defenses

Continuous Vulnerability Management for PowerShell

As with any technology, it is important to ensure that it is receiving the latest updates to
mitigate the potential for exploitation of a vulnerability. CTAs are constantly looking for ways
to exploit a network and defenders are equally facing challenges at keeping up with the pace
of patching and managing those vulnerabilities. Unfortunately, it only takes one unpatched
vulnerability for a CTA to be successful in exploiting a system, which is why it is important to
establish a process for continuous vulnerability management. Additionally, where a patch or fix
for a vulnerability is not available or able to be implemented, mitigating controls should be put
in place to ensure that the risk is reduced to an allowable level.

In November of 2021, PowerShell v7.2 was officially released, including many features, like the
ability to integrate with Microsoft Update, which allows for automatic updates to be enabled.
Upgrading from PowerShell v7 to v7.2 can be accomplished by using the MSI package, which
will provide the automatic update functionality. It is important to note that if downloaded from
the Microsoft Store, PowerShell will update, but the MSI package is still needed to enable
the automatic update capability through Microsoft Updates. As mentioned previously, there
are many older versions of PowerShell (e.g., v2) that are considered insecure and should
not be used. If these insecure versions of PowerShell must be used for the purposes of a
legacy system, ensure that they are not externally-exposed and have appropriate mitigating
controls in place.

Another area that can be controlled with vulnerability management is with PowerShell
remoting through WinRM. Open ports, such as 5985 and 5986 for WinRM, may be
identified during vulnerability scans on enterprise assets. Once identified, appropriate
controls should be applied based on the needs of the enterprise (e.g., Internet Protocol (IP)
allowlists for administrators using WinRM). This is especially important for assets that are
externally exposed.

SAFEGUARD TITLE IG1 IG2 IG3

7.1 Establish and Maintain a Vulnerability Management Process ✓ ✓ ✓

7.2 Establish and Maintain a Remediation Process ✓ ✓ ✓

7.3 Perform Automated Operating System Patch Management ✓ ✓ ✓

7.4 Perform Automated Application Patch Management ✓ ✓ ✓

7.5 Perform Automated Vulnerability Scans of Internal Enterprise Assets ✓ ✓

7.6 Perform Automated Vulnerability Scans of Externally-Exposed Enterprise Assets ✓ ✓

7.7 Remediate Detected Vulnerabilities ✓ ✓

CIS BENCHMARK
SECTION #

RECOMMENDATION # TITLE

18.9.108.1 18.9.108.1.1 (L1) Ensure ‘No auto-restart with logged on users for scheduled
automatic updates installations’ is set to ‘Disabled’

18.9.108.2 18.9.108.2.1 (L1) Ensure ‘Configure Automatic Updates’ is set to ‘Enabled’

18.9.108.2 18.9.108.2.2 (L1) Ensure ‘Configure Automatic Updates: Scheduled install day’ is
set to ‘0 - Every day’

18.9.108.2 18.9.108.2.3 (L1) Ensure ‘Remove access to “Pause updates” feature’ is set to
‘Enabled’

18.9.108.4 18.9.108.4.1 (L1) Ensure ‘Manage preview builds’ is set to ‘Disabled’

18.9.108.4 18.9.108.4.2 (L1) Ensure ‘Select when Preview Builds and Feature Updates are
received’ is set to ‘Enabled: 180 or more days’

18.9.108.4 18.9.108.4.3 (L1) Ensure ‘Select when Quality Updates are received’ is set to
‘Enabled: 0 days’

Why is This Important?

Implementation

Related CIS Critical
Security Controls

Related CIS Microsoft
Windows 10 Enterprise
Benchmark v1.12.0

16

Living off the Land Attacks: PowerShell PowerShell Defenses

Email and Browser Protections Against Malicious PowerShell Activity

Email and web browsers are two main avenues that a CTA can use to abuse PowerShell. For
example, an email could contain a malicious link that downloads a document using a VBA
macro to launch PowerShell via WMI. From there, it can execute a PowerShell script and
download additional payload(s) to the system. This is just one important example of how
PowerShell can be used in the early stages of an attack. Additionally, PowerShell can be used
for lateral movement and to establish persistence mechanisms for maintaining a foothold on
the network.

Defenses in this category include using trusted Domain Name System (DNS) services to
block access to known malicious domains (e.g., DNS queries), including ones that reach out
via PowerShell to download additional malicious content. Examples of such services include
Quad9 or the Malicious Domain Blocking and Reporting (MDBR) service from the Multi-
State Information Sharing and Analysis Center® (MS-ISAC®) and Elections Infrastructure
Information Sharing and Analysis Center® (EI-ISAC®). Additionally, network-based Uniform
Resource Locator (URL) filters are an added layer of security that can be used to help to limit
a system from connecting to malicious or unapproved websites (e.g., URLs). As phishing
emails are a large concern when it comes to the first stage of a PowerShell attack, using anti-
malware email protections, like sandboxing or attachment scanning, are helpful in thwarting
a potential incident. An enterprise can also block certain file types in their Secure Email
Gateway (SEG) that will help to reduce the amount of incoming email attachments that are
potentially malicious.

SAFEGUARD TITLE IG1 IG2 IG3

9.2 Use DNS Filtering Services ✓ ✓ ✓

9.3 Maintain and Enforce Network-Based URL Filters ✓ ✓

9.6 Block Unnecessary File Types ✓ ✓

9.7 Deploy and Maintain Email Server Anti-Malware Protections ✓

CIS BENCHMARK
SECTION #

RECOMMENDATION # TITLE

18.9.47.5.1 18.9.47.5.1.1 (L1) Ensure ‘Configure Attack Surface Reduction rules’ is set to
‘Enabled’

18.9.47.5.1 18.9.47.5.1.2 (L1) Ensure ‘Configure Attack Surface Reduction rules: Set the state for
each ASR rule’ is configured (Automated)

18.9.47.12 18.9.47.12.2 (L1) Ensure ‘Turn on e-mail scanning’ is set to ‘Enabled’

Why is This Important?

Implementation

Related CIS Critical
Security Controls

Related CIS Microsoft
Windows 10 Enterprise
Benchmark v1.12.0

17

Living off the Land Attacks: PowerShell PowerShell Defenses

Security Awareness and Training

An important part of any security program is training the workforce to identify a potential
attack. CTAs may use various forms of initial access, including phishing emails laced with
malicious links or macro-enabled files. Humans, while sometimes are our weakest link, can
also be our greatest defense if trained properly. According to the recent 2022 Verizon Data
Breach Investigations Report (DBIR)6, 82% of breaches involved a human-element.

Defenses, in the form of tools and other technologies, for avoiding these attacks are important.
However, training is also an integral part of defending against such attacks. This includes
activities, including education on what a social engineering attack could look like, what to do/
not to do if they receive a suspicious email, and best practices for secure browsing on the
internet. Additionally, having a process in place for reporting incidents (e.g., who to contact,
how to contact) is critical to not only ensure that the user is contacting the right team, but also
that they have a line of communication open to report the issue in a timely manner.

SAFEGUARD TITLE IG1 IG2 IG3

14.1 Establish and Maintain a Security Awareness Program ✓ ✓ ✓

14.2 Train Workforce Members to Recognize Social Engineering Attacks ✓ ✓ ✓

14.6 Train Workforce Members on Recognizing and Reporting Security Incidents ✓ ✓ ✓

14.7 Train Workforce on How to Identify and Report if Their Enterprise Assets are
Missing Security Updates

✓ ✓ ✓

6 https://www.verizon.com/business/resources/reports/dbir/

Why is This Important?

Implementation

Related CIS Critical
Security Controls

https://www.verizon.com/business/resources/reports/dbir/

18

Living off the Land Attacks: PowerShell Conclusion

Conclusion

Most cyber attacks occur due to a lack of good cyber hygiene. Whether that be through the
use and abuse of tools and techniques found on the impacted system (e.g., LotL) or through
an exploited vulnerability, many attacks can be defended by implementing Safeguards found
within the CIS Controls. This guide provides guidance on how an enterprise could apply the
Safeguards specifically in terms of defending against or detecting a PowerShell attack. By
implementing the security best practices recommended in this guide, enterprises can apply
a defense-in-depth strategy to strengthen their cybersecurity posture and help better defend
against a PowerShell attack.

Windows® and Microsoft® are registered trademarks of Microsoft Corporation. macOS is a trademarks of Apple Inc., registered in the U.S. and other
countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

19

Living off the Land Attacks: PowerShell Appendix A: Implementation Groups

APPENDIX A
Implementation Groups

The Implementation Group methodology was developed as a new way to prioritize the CIS
Controls. These IGs provide a simple and accessible way to help enterprises of different
classes focus their scarce security resources, while still leveraging the value of the CIS
Controls program, community, and complementary tools and working aids.

IG3

IG2

IG1

The number of Safeguards an enterprise is expected to implement
increases based on which group the enterprise falls into.

IG1 is the definition of essential cyber hygiene and represents a
minimum standard of information security for all enterprises. IG1
assists enterprises with limited cybersecurity expertise thwart
general, non-targeted attacks.

IG2 assists enterprises managing IT infrastructure of multiple
departments with di�ering risk profiles. IG2 aims to help enterprises
cope with increased operational complexity.

IG3 assists enterprises with IT security experts to secure sensitive
and confidential data. IG3 aims to prevent and/or lessen the impact of
sophisticated attacks.

56
SAFEGUARDS

153
TOTAL SAFEGUARDS

74
SAFEGUARDS

23
SAFEGUARDS

IG1

IG2 IG3

ESSENTIAL CYBER HYGIENE

An IG1 enterprise is small to medium-sized with limited IT and cybersecurity expertise
to dedicate toward protecting IT assets and personnel. The principal concern of these
enterprises is to keep the business operational, as they have a limited tolerance for downtime.
The sensitivity of the data that they are trying to protect is low and principally surrounds
employee and financial information. Safeguards selected for IG1 should be implementable
with limited cybersecurity expertise and aimed to thwart general, non-targeted attacks. These
Safeguards will also typically be designed to work in conjunction with small or home office
commercial off-the-shelf (COTS) hardware and software.

An IG2 enterprise employs individuals responsible for managing and protecting IT
infrastructure. These enterprises support multiple departments with differing risk profiles
based on job function and mission. Small enterprise units may have regulatory compliance
burdens. IG2 enterprises often store and process sensitive client or enterprise information
and can withstand short interruptions of service. A major concern is loss of public confidence
if a breach occurs. Safeguards selected for IG2 help security teams cope with increased
operational complexity. Some Safeguards will depend on enterprise-grade technology and
specialized expertise to properly install and configure.

An IG3 enterprise employs security experts that specialize in the different facets of
cybersecurity (e.g., risk management, penetration testing, application security). IG3 assets and
data contain sensitive information or functions that are subject to regulatory and compliance
oversight. An IG3 enterprise must address availability of services and the confidentiality and
integrity of sensitive data. Successful attacks can cause significant harm to the public welfare.
Safeguards selected for IG3 must abate targeted attacks from a sophisticated adversary and
reduce the impact of zero-day attacks.

If you would like to know more about the Implementation Groups and how they pertain to
enterprises of all sizes, there are many resources that explore the Implementation Groups
and the CIS Controls in general on our website at https://www.cisecurity.org/controls/cis-
controls-list/.

IG1

IG2 (Includes IG1)

IG3 (Includes IG1 and IG2)

https://www.cisecurity.org/controls/cis-controls-list/
https://www.cisecurity.org/controls/cis-controls-list/

20

Living off the Land Attacks: PowerShell Appendix B: Related CIS Safeguards

APPENDIX B
Related CIS Safeguards

SAFEGUARD TITLE DEFENSE IG1 IG2 IG3

1.1 Establish and Maintain Detailed Enterprise Asset Inventory Manage Your PowerShell Environment ✓ ✓ ✓

2.1 Establish and Maintain a Software Inventory Manage Your PowerShell Environment ✓ ✓ ✓

2.2 Ensure Authorized Software is Currently Supported Manage Your PowerShell Environment ✓ ✓ ✓

2.5 Allowlist Authorized Software Manage Your PowerShell Environment ✓ ✓

2.6 Allowlist Authorized Libraries Manage Your PowerShell Environment ✓ ✓

2.7 Allowlist Authorized Scripts Manage Your PowerShell Environment ✓

5.1 Establish and Maintain an Inventory of Accounts Manage Your PowerShell Environment ✓ ✓ ✓

5.4 Restrict Administrator Privileges to Dedicated Administrator Accounts Manage Your PowerShell Environment ✓ ✓ ✓

6.1 Establish an Access Granting Process Manage Your PowerShell Environment ✓ ✓ ✓

6.2 Establish an Access Revoking Process Manage Your PowerShell Environment ✓ ✓ ✓

6.8 Define and Maintain Role-Based Access Control Manage Your PowerShell Environment ✓

4.1 Establish and Maintain a Secure Configuration Process Secure Configurations for PowerShell ✓ ✓ ✓

4.2 Establish and Maintain a Secure Configuration Process for Network
Infrastructure

Secure Configurations for PowerShell ✓ ✓ ✓

4.4 Implement and Manage a Firewall on Servers Secure Configurations for PowerShell ✓ ✓ ✓

4.5 Implement and Manage a Firewall on End-User Devices Secure Configurations for PowerShell ✓ ✓ ✓

4.8 Uninstall or Disable Unnecessary Services on Enterprise Assets and
Software

Secure Configurations for PowerShell ✓ ✓

10.1 Deploy and Maintain Anti-Malware Software Malware Defenses for PowerShell ✓ ✓ ✓

10.2 Configure Automatic Anti-Malware Signature Updates Malware Defenses for PowerShell ✓ ✓ ✓

10.5 Enable Anti-Exploitation Features Malware Defenses for PowerShell ✓ ✓

10.6 Centrally Manage Anti-Malware Software Malware Defenses for PowerShell ✓ ✓

10.7 Use Behavior-Based Anti-Malware Software Malware Defenses for PowerShell ✓ ✓

13.7 Deploy a Host-Based Intrusion Prevention Solution Malware Defenses for PowerShell ✓

13.8 Deploy a Network Intrusion Prevention Solution Malware Defenses for PowerShell ✓

8.1 Establish and Maintain an Audit Log Management Process PowerShell Logging ✓ ✓ ✓

8.2 Collect Audit Logs PowerShell Logging ✓ ✓ ✓

8.3 Ensure Adequate Audit Log Storage PowerShell Logging ✓ ✓ ✓

8.4 Standardize Time Synchronization PowerShell Logging ✓ ✓

8.5 Collect Detailed Audit Logs PowerShell Logging ✓ ✓

8.6 Collect DNS Query Audit Logs PowerShell Logging ✓ ✓

8.7 Collect URL Request Audit Logs PowerShell Logging ✓ ✓

8.8 Collect Command-Line Audit Logs PowerShell Logging ✓ ✓

8.9 Centralize Audit Logs PowerShell Logging ✓ ✓

8.10 Retain Audit Logs PowerShell Logging ✓ ✓

8.11 Conduct Audit Log Reviews PowerShell Logging ✓ ✓

7.1 Establish and Maintain a Vulnerability Management Process Continuous Vulnerability Management for
PowerShell

✓ ✓ ✓

7.2 Establish and Maintain a Remediation Process Continuous Vulnerability Management for
PowerShell

✓ ✓ ✓

7.3 Perform Automated Operating System Patch Management Continuous Vulnerability Management for
PowerShell

✓ ✓ ✓

7.4 Perform Automated Application Patch Management Continuous Vulnerability Management for
PowerShell

✓ ✓ ✓

7.5 Perform Automated Vulnerability Scans of Internal Enterprise Assets Continuous Vulnerability Management for
PowerShell

 ✓ ✓

21

Living off the Land Attacks: PowerShell Appendix B: Related CIS Safeguards

SAFEGUARD TITLE DEFENSE IG1 IG2 IG3

7.6 Perform Automated Vulnerability Scans of Externally-Exposed
Enterprise Assets

Continuous Vulnerability Management for
PowerShell

 ✓ ✓

7.7 Remediate Detected Vulnerabilities Continuous Vulnerability Management for
PowerShell

 ✓ ✓

9.2 Use DNS Filtering Services Email and Browser Protections Against
Malicious PowerShell Activity

✓ ✓ ✓

9.3 Maintain and Enforce Network-Based URL Filters Email and Browser Protections Against
Malicious PowerShell Activity

 ✓ ✓

9.6 Block Unnecessary File Types Email and Browser Protections Against
Malicious PowerShell Activity

 ✓ ✓

9.7 Deploy and Maintain Email Server Anti-Malware Protections Email and Browser Protections Against
Malicious PowerShell Activity

 ✓

14.1 Establish and Maintain a Security Awareness Program Security Awareness and Training ✓ ✓ ✓

14.2 Train Workforce Members to Recognize Social Engineering Attacks Security Awareness and Training ✓ ✓ ✓

14.6 Train Workforce Members on Recognizing and Reporting Security Incidents Security Awareness and Training ✓ ✓ ✓

14.7 Train Workforce on How to Identify and Report if Their Enterprise Assets are
Missing Security Updates

Security Awareness and Training ✓ ✓ ✓

22

Living off the Land Attacks: PowerShell Appendix C: ATT&CK (Sub-)Techniques

APPENDIX C
ATT&CK (Sub-)Techniques
ATT&CK (SUB-)TECHNIQUE ID ATT&CK (SUB-)TECHNIQUE TITLE POWERSHELL DEFENSE

T1059.001 Command and Scripting Interpreter: PowerShell Manage Your PowerShell Environment
Secure Configurations for PowerShell
Malware Defenses for PowerShell

T1562.010 Impair Defenses: Downgrade Attack Manage Your PowerShell Environment

T1546.013 Event Triggered Execution: PowerShell Profile Secure Configurations for PowerShell

T1070.001 Indicator Removal on Host: Clear Windows Event Logs PowerShell Logging

23

Living off the Land Attacks: PowerShell Appendix D: CIS Benchmark Recommendations

APPENDIX D
CIS Benchmark Recommendations7

7 From the CIS Microsoft Windows 10 Enterprise Benchmark v1.12.0

CIS BENCHMARK
SECTION #

RECOMMENDATION # RECOMMENDATION TITLE POWERSHELL DEFENSE

18.9.103 18.9.103.1 (L2) Ensure ‘Allow Remote Shell Access’ is set to ‘Disabled’ Manage your PowerShell environment

18.9.102.1 18.9.102.1.1 (L1) Ensure ‘Allow Basic authentication’ is set to ‘Disabled’ Secure Configurations for PowerShell

18.9.102.1 18.9.102.1.2 (L1) Ensure ‘Allow unencrypted traffic’ is set to ‘Disabled’ Secure Configurations for PowerShell

18.9.102.1 18.9.102.1.3 (L1) Ensure ‘Disallow Digest authentication’ is set to ‘Enabled’ Secure Configurations for PowerShell

18.9.102.2 18.9.102.2.1 (L1) Ensure ‘Allow Basic authentication’ is set to ‘Disabled’ Secure Configurations for PowerShell

18.9.102.2 18.9.9102.2.2 (L2) Ensure ‘Allow remote server management through WinRM’ is set
to ‘Disabled’

Secure Configurations for PowerShell

18.9.102.2 18.9.9102.2.3 (L1) Ensure ‘Allow unencrypted traffic’ is set to ‘Disabled’ Secure Configurations for PowerShell

18.9.9102.2 18.9.9102.2.4 (L1) Ensure ‘Disallow WinRM from storing RunAs credentials’ is set to
‘Enabled’

Secure Configurations for PowerShell

5 5.40 (L2) Ensure ‘Windows Remote Management (WS-Management)
(WinRM)’ is set to ‘Disabled’

Secure Configurations for PowerShell

18.9.47.5.1 18.9.47.5.1.1 (L1) Ensure ‘Configure Attack Surface Reduction rules’ is set to
‘Enabled’

Malware Defenses for PowerShell
Email and Browser Protections
Against Malicious PowerShell Activity

18.9.47.5.1 18.9.47.5.1.2 (L1) Ensure ‘Configure Attack Surface Reduction rules: Set the state for
each ASR rule’ is configured

Malware Defenses for PowerShell
Email and Browser Protections
Against Malicious PowerShell Activity

18.9.100 18.9.100.1 (L1) Ensure ‘Turn on PowerShell Script Block Logging’ is set to
‘Enabled’

PowerShell Logging

18.8.3 18.8.3.1 (L1) Ensure ‘Include command line in process creation events’ is set to
‘Enabled’

PowerShell Logging

18.9.108.1 18.9.108.1.1 (L1) Ensure ‘No auto-restart with logged on users for scheduled
automatic updates installations’ is set to ‘Disabled’

Continuous Vulnerability Management
for PowerShell

18.9.108.2 18.9.108.2.1 (L1) Ensure ‘Configure Automatic Updates’ is set to ‘Enabled’ Continuous Vulnerability Management
for PowerShell

18.9.108.2 18.9.108.2.2 (L1) Ensure ‘Configure Automatic Updates: Scheduled install day’ is
set to ‘0 - Every day’

Continuous Vulnerability Management
for PowerShell

18.9.108.2 18.9.108.2.3 (L1) Ensure ‘Remove access to “Pause updates” feature’ is set to
‘Enabled’

Continuous Vulnerability Management
for PowerShell

18.9.108.4 18.9.108.4.1 (L1) Ensure ‘Manage preview builds’ is set to ‘Disabled’ Continuous Vulnerability Management
for PowerShell

18.9.108.4 18.9.108.4.2 (L1) Ensure ‘Select when Preview Builds and Feature Updates are
received’ is set to ‘Enabled: 180 or more days’

Continuous Vulnerability Management
for PowerShell

18.9.108.4 18.9.108.4.3 (L1) Ensure ‘Select when Quality Updates are received’ is set to
‘Enabled: 0 days’

Continuous Vulnerability Management
for PowerShell

18.9.47.12 18.9.47.12.2 (L1) Ensure ‘Turn on e-mail scanning’ is set to ‘Enabled’ Email and Browser Protections
Against Malicious PowerShell Activity

24

Living off the Land Attacks: PowerShell Appendix E: Acronyms and Abbreviations

APPENDIX E
Acronyms and Abbreviations
ACRONYM ABBREVIATION

AD Active Directory

AMSI Antimalware Scan Interface

API Application Programming Interface

CDM Community Defense Model

CIS Center for Internet Security

CMS Cryptographic Message Syntax

COM Control Object Model

COTS Commercial Off-the-Shelf

CTA Cyber Threat Actor

DLL Dynamic Link Library

DNS Domain Name System

EDR Endpoint Detection and Response

EI-ISAC Elections Infrastructure Information Sharing and Analysis Center

GPO Group Policy Object

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IG Implementation Group

IP Internet Protocol

ISE Integrated Scripting Environment

IT Information Technology

JEA Just Enough Administration

LotL Living off the Land

MDBR Malicious Domain Blocking and Reporting

MITRE ATT&CK MITRE Adversarial Tactics, Techniques, and Common Knowledge

MS-ISAC Multi-State Information Sharing and Analysis Center

MSI Microsoft Windows Installer

MSRC Microsoft Security Response Center

OS Operating System

PowerShell ISE PowerShell Integrated Scripting Environment

RBAC Role-Based Access Control

RDP Remote Desktop Protocol

SEG Secure Email Gateway

SIEM Security Information and Event Management

SMB Server Message Block

SME Small- and Medium-sized Enterprises

TTP Tactics, Techniques, and Procedures

UAC User Account Control

URL Uniform Resource Locator

VBA Visual Basic for Applications

VBS Visual Basic Script

Verizon DBIR Verizon Data Breach Investigations Report

WDAC Windows Defender Application Control

WinRM Windows Remote Management

WMI Windows Management Instrumentation

25

Living off the Land Attacks: PowerShell Appendix F: References and Resources

APPENDIX F
References and Resources
REFERENCE/RESOURCE URL

CERT-EU: PowerShell—Cybersecurity
Perspective

 https://media.cert.europa.eu/static/WhitePapers/CERT-EU-SWP2019-001.pdf

CIS Benchmarks https://www.cisecurity.org/cis-benchmarks/

CIS Community Defense Model 2.0 https://www.cisecurity.org/white-papers/cis-community-defense-model-2-0/

CIS Controls https://www.cisecurity.org/controls/

CIS Controls v7.1 Exploited Protocols:
Remote Desktop Protocol (RDP)

 https://www.cisecurity.org/white-papers/exploited-protocols-remote-desktop-protocol-rdp/

CIS Controls v8 Exploited Protocols:
Server Message Block (SMB)

 https://www.cisecurity.org/white-papers/cis-controls-v8-exploited-protocols-server-message-block-smb/

CIS Controls v8 Commonly Exploited
Protocols: Windows Management
Instrumentation (WMI)

 https://www.cisecurity.org/insights/white-papers/cis-controls-commonly-exploited-protocols-windows-
management-instrumentation

Globe News Wire https://www.globenewswire.com/news-release/2016/04/12/828009/26208/en/Carbon-Black-United-Threat-
Research-Report-Reveals-How-Cyber-Attackers-Exploit-Microsoft-PowerShell-to-Launch-Attacks.html

PowerShell on GitHub https://github.com/PowerShell/PowerShell

Microsoft PowerShell Documentation https://docs.microsoft.com/en-us/powershell/

Microsoft PowerShell Team https://devblogs.microsoft.com/powershell/

Microsoft Antimalware Scan
Interface (AMSI)

 https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

MITRE ATT&CK® Framework v8.2 https://attack.mitre.org/versions/v8/matrices/enterprise/

https://media.cert.europa.eu/static/WhitePapers/CERT-EU-SWP2019-001.pdf
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/white-papers/cis-community-defense-model-2-0/
https://www.cisecurity.org/controls/
https://www.cisecurity.org/white-papers/exploited-protocols-remote-desktop-protocol-rdp/
https://www.cisecurity.org/white-papers/cis-controls-v8-exploited-protocols-server-message-block-smb/
https://www.cisecurity.org/insights/white-papers/cis-controls-commonly-exploited-protocols-windows-management-instrumentation
https://www.cisecurity.org/insights/white-papers/cis-controls-commonly-exploited-protocols-windows-management-instrumentation
https://www.globenewswire.com/news-release/2016/04/12/828009/26208/en/Carbon-Black-United-Threat-Research-Report-Reveals-How-Cyber-Attackers-Exploit-Microsoft-PowerShell-to-Launch-Attacks.html
https://www.globenewswire.com/news-release/2016/04/12/828009/26208/en/Carbon-Black-United-Threat-Research-Report-Reveals-How-Cyber-Attackers-Exploit-Microsoft-PowerShell-to-Launch-Attacks.html
https://github.com/PowerShell/PowerShell
https://docs.microsoft.com/en-us/powershell/
https://devblogs.microsoft.com/powershell/
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://attack.mitre.org/versions/v8/matrices/enterprise/

26

Living off the Land Attacks: PowerShell

The Center for Internet Security, Inc. (CIS®) makes the connected
world a safer place for people, businesses, and governments through
our core competencies of collaboration and innovation. We are a
community-driven nonprofit, responsible for the CIS Critical Security
Controls® and CIS Benchmarks™, globally recognized best practices
for securing IT systems and data. We lead a global community of IT
professionals to continuously evolve these standards and provide
products and services to proactively safeguard against emerging
threats. Our CIS Hardened Images® provide secure, on-demand,
scalable computing environments in the cloud.

CIS is home to the Multi-State Information Sharing and Analysis
Center® (MS-ISAC®), the trusted resource for cyber threat prevention,
protection, response, and recovery for U.S. State, Local, Tribal, and
Territorial government entities, and the Elections Infrastructure
Information Sharing and Analysis Center® (EI-ISAC®), which supports
the rapidly changing cybersecurity needs of U.S. election offices. To
learn more, visit CISecurity.org or follow us on Twitter: @CISecurity.

 cisecurity.org
 info@cisecurity.org
 518-266-3460
 Center for Internet Security
 @CISecurity
 TheCISecurity
 cisecurity

http://CISecurity.org
http://cisecurity.org
mailto:info@cisecurity.org

	July 2022
	Introduction
	PowerShell Overview
	What is PowerShell?
	Benefits of Using PowerShell
	Attacks Using PowerShell
	Why Implement Defenses Against PowerShell?

	Purpose
	What This Guide Covers
	Who Should Use This Guide
	How To Use This Guide

	PowerShell Defenses
	Manage Your PowerShell Environment
	Secure Configurations for PowerShell
	Malware Defenses for PowerShell
	PowerShell Logging
	Continuous Vulnerability Management for PowerShell
	Email and Browser Protections Against Malicious PowerShell Activity
	Security Awareness and Training

	Conclusion
	Appendix AImplementation Groups
	Appendix BRelated CIS Safeguards
	Appendix CATT&CK (Sub-)Techniques
	Appendix DCIS Benchmark Recommendations
	Appendix EAcronyms and Abbreviations
	Appendix FReferences and Resources

